
Prénom:	Date :	Classe:		
Nom:	Révision			

Trigonométrie

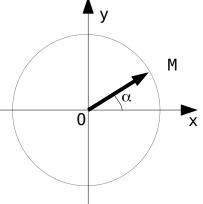
Définitions de base.

Coté			
ou ba	se		

Cosinus = coté _	ou base sur	$\cos(\alpha) =$
Sinus = coté	sur	$_{-}$ $\sin (\alpha) =$
tangente = coté	sur coté	$_{}$ tan (α) =
On a donc aussi	$ \tan(\alpha) = \frac{\sin(\alpha)}{\cos(\alpha)} $	

Remarque:	dans le triangle rectangle on vérifie que :	$0 \le \cos(\alpha) \le 1$	et
$_{}$ $\sin(\alpha)$			

Travail.


Tracer successivement 3 triangles rectangles avec pour dimensions :

	a	b	С
triangle 1		8,7 cm	5 cm
		7,1 cm	7,1 cm
		5 cm	8,7 cm

Avec le théorème de Pythagore, calculez l'hypoténuse de chaque triangle. Vérifiez .

Pour chaque triangle-rectangle d'indice i, calculer $cos(\alpha_i)$; $sin(\alpha_i)$; $tan(\alpha_i)$, Calculer α_i , vérifier graphiquement.

Cercle de rayon 1
Dessiner un cercle de rayon 10 cm (qui représentera l'unité), avec un repère Oxy centré.

α (deg)	0	30	45	90	120	135	150	180	210
$cos(\alpha)$									
$sin(\alpha)$									
tan(a)									

α (deg)					
$\cos(\alpha)$					
$sin(\alpha)$					
tan(a)					